$\left.\mathrm{OCH}_{3}\right), 4.8(1 \mathrm{H}, \mathrm{m}$, olefin), $7.2-8(5 \mathrm{H}, \mathrm{m}$, arom. $)$; mass spectrum, m / e $240\left(\mathrm{M}^{+}, 100\right), 238$ (35). Precise mass determination: calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O} 240.115022$; found 240.1150. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}$, 79.97 ; H, 6.71; O, 13.32. Found: C, 79.59; H, 6.70; O, 13.63.

1,4-Dihydro-1,8-dimethylphenanthrene (3d): mp $33-34^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.38\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 2.65\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 3.65(3 \mathrm{H}, \mathrm{m}$, CH_{2}), 5.9 ($2 \mathrm{H}, \mathrm{m}$, olefin), $7.5(5 \mathrm{H}, \mathrm{m}$, arom.) ; mass spectrum $\mathrm{m} / \mathrm{e} 208$ $\left(\mathrm{M}^{+}, 100\right), 206$ (70). Precise mass determination: calcd for $\mathrm{C}_{16} \mathrm{H}_{16}$ 208.125194; found 208.1251. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26}$: C, $92.26 ; \mathrm{H}, 7.74$. Found: C, 92.32; H, 7.68.
Photolysis of 2-Vinylbiphenyl (7). A solution of compound 7 $\left(10^{-2} \mathrm{M}\right)$ in propylamine was purged with nitrogen and irradiated with Rul $3000-\AA$ lamps for 8 h . After the amine was removed under reduced pressure, the crude photoreaction product was analyzed by NMR and purified by column chromatography on alumina.

From 180 mg of $7,125 \mathrm{mg}$ of $6 \mathrm{a}(70 \%)$ and 15 mg of $9(8 \%)$ were obtained. The structures of these compounds were established by comparison with authentic samples.

2-Ethylbiphenyl (9) was prepared by reduction of the starting material in the usual manner.

Acknowledgments. The authors thank Dr. B. M. Carden for linguistic criticism of the manuscript.

Registry No.-la, 103-30-0; 1b, 18869-29-9; 1c, 15638-14-9; 1d, ;36888-18-3; 2a, 645-49-8; 2b, 2510-76-1; 2c, 2510-75-0; 2d, 20657-42-5; 3a, 20244-28-4, 3b, 69795-78-4; 3c, 69795-79-5; 3d, 69795-80-8; 4a, 85-01-8; 4b, 1576-67-6; 4c, 15638-08-1; 4d, 7372-87-4; 5а, 103-29-7; 5b, 538-39-6; 5c, 1657-55-2; $\mathbf{5 d}$, 952-80-7; 6а, 776-35-2; 6b, 69795-81-9; 6c, 69832-49-1: 6d, 69795-82-0; 7, 1587-22-0; 9, 1812-51-7; p, p'-dimethylbenzoin, 1218-89-9; 0,o'-dimethylbenzoin, 4389-39-3; p-tolualdehyde, 104-87-0; o-tolualdehyde, 529-20-4; 2-iodobiphenyl, 2113-51-1; acetaldehyde. 75-07-0; 1-biphenylethanol, 16927-84-7.

References and Notes

(1) E. V. Blackburn and C. J. Timmons, Q. Rev., Chem, Soc., 23, 482 (1969).
(2) F. R. Stermizz in "Organic Photochemistry", Vol. 1, O. L. Chapman, Ed., Marcel Dekker, New York, 1967
(3) See, for example. "The Exciplex", M. Gordon and W. R. Ware, Eds., Academic Press, New York, 1975; A. Weller, Pure Appl. Chem., 16, 115 (1968), and references cited therein; R. S. Davidson, "Molecular Associations'', R. Foster, Ed., Academic Press, New York, 1975, p 215; M. Ottolenghi, Acc. Chem. Res., 6, 153 (1973).
(4) T. Kubota ard H. Sakurai, Chem. Lett., 923, 1249 (1972).
(5) F. D. Lewis and T. I. Ho, J. Am. Chem. Soc., 99, 7991 (1977)
(6) (a) N. C. Yang, D. M. Shold, and B. Kim, J. Am. Chem. Soc., 98, 6587 (1976); (b) S. G. Cohen, A. Parola, and G. H. Parsons, Chem. Rev., 73, 141 (1973); (c) N. C. Yang and J Libman, J. Am. Chem. Soc., 95, 5783 (1973).
(7) A. Couture. A. Lablache-Combier, and H. Ofenberg, Tetrahedron, 31, 2023 (1975).
(8) R. Lapouyade, R. Koussini, and H. Bouas-Laurent, J. Am. Chem. Soc., 99, 7374 (1977)
(9) I. G. Dinulescu, M. Avram, and C. D. Nenitzescu, Chem. Ber., 93, 1795 (1960).
(10) L. J. Durham. J. Studebaker, and M. J. Perkins, Chem. Commun., 456 (1965).
(11) P. W. Rabideau and R. G. Harvey, J. Org. Chem., 35, 25 (1970)
(12) In the case of 9,10 -dimethylphenanthrene, a minor product (7%), whose spectral properties are consistent with a 1,4-dihydro structure, has been isolated. ${ }^{1}$
(13) F. J. Burgess and D. H. Richards, Eur. Polym. J., 10, 645 (1974).
(14) J. A. Barltrop, Pure Appl. Chem., 33, 179 (1973).
(15) See Andrew Streitwieser, "Molecular Orbital Theory for Organic Chemists" Wiley, New York, 1961.
(16) M. Bellas, D. Bryce-Smith, A. Gilbert, G. Klunkin, S. Krestonosich, C Manning, and S. Wiison, J. Chem. Soc., Perkin Trans. 1, 2571 (1977).
(17) R. Yamdagni and P. Kebarle, J. Am. Chem. Soc., 95, 3504 (1973).
(18) (a) S. W. Horgan, D. D. Morgan, and M. Orchin, J. Org. Chem., 38, 3801 (1973); (b) A. Padwa and A. Mazzu, Tetrahedron Lett., 4471 (1974); (c) J. C. Langendam and W. H. Laarhoven, ibid., 231 (1975).
(19) A. Buquet, A. Couture. and A. Lablache-Combier, unpublished results.
(20) R. L. Shriner and A. Berger, "Organic Syntheses", Collect. Vol. 3, Wiley, New York, 1955, p 786
21) W. S. Ide and J. S. Buck, Org. Rect., 4, 269 (1948).
(22) L. J. Bellamy, "The Infrared Spectra of Complex Molecules", 2nd ed., Methuen and Co. Ltd, London, 1958, p 34.
(23) D. J. Gramm and R. H. Bauer, J. Am. Chem. Soc., 81, 5983 (1959).
(24) E. Spath, Monatsh. Chem., 35, 463 (1914).
(25) G. K. Cherles, K. Bradsher, and R. W. Wert, J. Am. Chem. Soc., 62, 2806 (1940).
(26) H. Gilman, ل. E. Kirby, and C. R. Kinney, J. Am. Chem. Soc., 51, 2260 (1929).
(27) H. Kunimato, Nippon Kagaku Zasshi, 84, 65 (1963).
28) F. D. Greene. N. Adam, and J. E. Cantrill, J. Am. Chem. Soc., 83, 3461 (1961).
(29) W. J. Muizebelt, Thesis, Nijmegen, 1967.
(30) O. Kruber and A. Reithel. Chem. Ber., 87, 1469 (1954).
(31) NMR spectra were compared with those described in the literature: K. D. Bartle and J. A. S. Smith, Spectrochim. Acta, Part A, 23A, 1689 (1967).
(32) G. T. Tatevosyan, P. A. Zagarets, and G. A. Vardanyan, Zh. Obshch. Khim., 23, 941 , (1953).
(33) F. E. King and T. J. King, J. Chem. Soc., 1373 (1954)
(34) J. S. Buck and S. S. Jenkins, J. Am. Chem. Soc., 51, 2163 (1929).
(35) T. Reichstein, A. Cohen, M. Ruth, and H. F. Meldahl, Helv. Chim. Acta, 19, 412 (1936).
(36) L. G. Humber and W. I. Taylor, J. Chem. Soc, 1044 (1955).
(37) G. H. Heaven, D. M. Hall, M. Lesslie, E. E. Turner, and G. R. Bird, J. Chem. Soc., 131 (1954).
(38) W. D. Bowman and J. N. Demas, J. Phys. Chem., 80, 2434 (1976).

Electrolytic Decarboxylation Reactions. 4. Electrosyntheses of 3-Alkyl-2-cycloalken-1-ol Acetates from 1-Alkyl-2-cycloalkene-1-carboxylic Acids. Preparation of $d \boldsymbol{l}$-Muscone from Cyclopentadecanone

Sigeru Torii,* Tsutomu Inokuchi, Kazuki Mizuguchi. and Masao Yamazaki

Department of Industrial Chemistry, School of Engineering, Okayama University, Okayama Japan 700

Received December 1, 1978
Based on stimulating results on the electrolytic acetoxylation of aliphatic carboxylic acids, ${ }^{1}$ we have developed an electrosynthetic procedure for 3-alkyl-2-cycloalken-1-ol acetates (2a) from 1-alkyl-2-cycloalkene-1-carboxylic acids (1c) prepared from alicyclic 2 -oxoalkanoates (3a). Synthetic application of such non-Kolbe type reactions on 3-alkenoates has been paid little attention. ${ }^{2}$ The present 3 -alkyl-2-alken1 -ol synthesis involves a regiospecific acetoxylation at the γ position of the acids $1 \mathbf{c}$, which serves as an introducing method for a methyl group at the β position of cyclopentadecanone, ${ }^{3}$ leading to dl -muscone.

The 3 -alkenoic acids $1 \mathbf{c}$ were all prepared by (i) alkylation of $3 a$, (ii) reduction of $3 b$ with sodium borohydride or lithium tri-tert-butoxyaluminum hydride, (iii) dehydration of the alcohol 4 a via the corresponding mesylate $\mathbf{4 b}$, and (iv) hy-

drolysis of la in $\sim 70 \%$ overall yields. The electroacetoxylation of $1 \mathbf{c}\left(n=12, \mathrm{R}^{\mathrm{I}}=\mathrm{Me}\right.$) was carried out in $\mathrm{AcOH}-t-\mathrm{BuOH}-$ $\mathrm{Et}_{3} \mathrm{~N}$ using platinum electrodes at a constant applied voltage of $\sim 30 \mathrm{~V}\left(36-54 \mathrm{~mA} / \mathrm{cm}^{2}, 153 \mathrm{~F} / \mathrm{mol}\right)$ at $19-22^{\circ} \mathrm{C}$ for 4 h . The electrolysis conditions and results of the related compounds lc are shown in Table I.

Electrolytic decarboxylation of the acids $\mathbf{1 c}$ by loss of two electrons on the anode would provide the tertiary carbonium ion a and subsequent three-carbon anionotropic rearrangement ${ }^{4}$ of the cation a into the secondary carbonium ion b. The results (Table I) reveal that electrodecarboxylation of $1 \mathbf{c}$ in

Table I. Conditions ${ }^{\text {a }}$ and Results of Electrolytic Acetoxylation of 1-Alkyl-2-cycloalkene-1-carboxylic Acids 1c

	substrate lc		mmol	current density, $\mathrm{mA} / \mathrm{cm}^{2}$	electricity, $\mathrm{F} / \mathrm{mol}$	time, h

${ }^{a}$ Electrolyzed at $19-22^{\circ} \mathrm{C}, \mathrm{Pt}\left(3 \mathrm{~cm}^{2}\right)$, in a mixed solution of $\mathrm{AcOH}(1.5 \mathrm{~mL})$, $\mathrm{AcOEt}(3.5 \mathrm{~mL})$, and $t-\mathrm{BuOH}(0.19 \mathrm{~mL})$ using Et $\mathrm{N}_{3} \mathrm{~N}$ $(0.6 \mathrm{~mL})$ as an additive. ${ }^{6}$ Adjusted at 30 V (applied voltage). ${ }^{\text {c }}$ Adjusted at 20 V (applied voltage). ${ }^{d}$ Based on isolated product.

Table II. Conditions ${ }^{a}$ and Results of Electrolytic Methoxylation of 1-Alkyl-2-cycloalkene-1-carboxylic Acids 1c

substrate 1c			$\begin{gathered} \text { current density, }{ }^{b} \mathrm{~mA} / \mathrm{cm}^{2} \end{gathered}$	electricity, $\mathrm{F} / \mathrm{mol}$	Time, h	$\begin{gathered} \text { yield of } 2 \mathbf{c}+5, \\ \%(\text { ratio }) \end{gathered}$
n	R^{1}	$\overline{\mathrm{mmol}}$				
12	Me	0.104	41-44	124	3	$83(1: 2)^{\text {d }}$
9	Me	0.104	37-44	115	3	$83(1: 2)^{e}$
3	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4}$	0.392	30-46	35	3.5	57 (7:3) f

${ }^{a}$ The electrolyses were carried out at $16-26^{\circ} \mathrm{C}, \mathrm{Pt}$ anode ($3 \mathrm{~cm}^{2}$) and SUS-27 stainless steel cathode ($11 \mathrm{~cm}^{2}$), in MeOH (15 mL) with $\mathrm{Et}_{3} \mathrm{~N}(210 \mathrm{mg})$ as an additive. ${ }^{b}$ Applied voltage was adjusted at $20 \mathrm{~V} .{ }^{c}$ Based on isolated products. ${ }^{d}$ Estimated by comparison with ${ }^{1} \mathrm{H}$ NMR signals at $\delta 3.16$ and $3.22\left(\mathrm{~s}, \mathrm{OCH}_{3}\right) .{ }^{e}$ Estimated by comparison with ${ }^{1} \mathrm{H}$ NMR signals at $\delta 3.19$ and 3.26 ($\mathrm{s}, \mathrm{OCH}_{3}$). f Estimated by VPC (silicon GE-30 $10,4 \mathrm{~m} \times 4 \mathrm{~mm}, \mathrm{H}_{2}$ flow rate $35 \mathrm{~mL} / \mathrm{min}$): $R_{\mathrm{t}}(\mathrm{min}) 5$ (8.5) and $2 \mathrm{c}(10.2)$.
$\mathrm{AcOH}-t-\mathrm{BuOH}-\mathrm{Et}_{3} \mathrm{~N}$ affords exclusively the acetates 2a via the carbonium ion b. In contrast, electromethoxylation of 1 c ($n=12, \mathrm{R}^{1}=\mathrm{Me}$) conducted in the more polar solvent $\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N}$ using the same apparatus fitted with a platinum anode and a stainless steel (SUS-27) cathode at a constant applied voltage of $\sim 20 \mathrm{~V}\left(41-44 \mathrm{~mA} / \mathrm{cm}^{2}, 124 \mathrm{~F} / \mathrm{mol}\right)$ at $20-26$ ${ }^{\circ} \mathrm{C}$ for 3 h gave a mixture of $2 \mathrm{c}\left(n=12, \mathrm{R}^{1}=\mathrm{Me} ; 28 \%\right.$ yield) and $\mathbf{5}$ ($n=12, \mathrm{R}^{1}=\mathrm{Me} ; 55 \%$ yield). These results (Table II)

suggest that the strong nucleophilicity of methanol, compared to acetic acid, would preferentially lead to combination with the initially produced cation a to give 5 , whereas the carbonium ion b would be stabilized in the weak nucleophilic medium. ${ }^{5}$
On the other hand, electrodecarboxylation of 8,8a-epoxy-2,2-(ethylenedioxy)decalin-4a-carboxylic acid (6) in $\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N}$ at $20 \mathrm{~V}\left(23-32 \mathrm{~mA} / \mathrm{cm}^{2}\right)$ afforded smoothly the

corresponding enone 7 in 84% yield as the sole product. However, under the same reaction conditions electrodecarboxylation of the octalin derivative 8 in $\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N}$ provided the mixed products $9(28.6 \%)$ and $10(39.7 \%)$.

Part of our synthetic interest was directed to the conversion of the acetate $\mathbf{2 a}\left(n=12, \mathrm{R}^{1}=\mathrm{Me}\right)$ into dl -muscone. After hydrolysis of $\mathbf{2 a}\left(n=12, \mathrm{R}^{1}=\mathrm{Me}\right)$ with potassium hydroxide in aqueous methanol, oxidation of $2 b\left(n=12, \mathrm{R}^{1}=\mathrm{Me}\right)$ with pyridinium chlorochromate to give 11 and subsequent hydrogenation using palladium on charcoal afforded a 59% overall yield of $d l$-muscone.

11

Experimental Section

Melting points and boiling points are uncorrected. IR spectra were determined with a JASCO IRA-1 grating spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were determined at 60 MHz with a Hitachi R-24 or at 100 MHz with a JEOL MH-100 spectrometer. ${ }^{19} \mathrm{C}$ NMR spectra were determined at 25.05 MHz with a JEOL pulsed Fourier transform spectrometer, Model FX-100. Samples were dissolved in CDCl_{3}, and the chemical shift values were expressed in δ values (ppm) relative to $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. Elemental analyses were performed in our laboratory.

Methyl 1-Methyl-2-oxocyclopentadecane-1-carboxylate (3b, $\left.n=12, \mathbf{R}^{1}=\mathbf{R}^{2}=\mathbf{M e}\right)$. A mixture of $3 \mathbf{a}^{6}\left(n=12, \mathrm{R}^{2}=\mathrm{Me} ; 425 \mathrm{mg}\right.$, 1.51 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.64 \mathrm{~g}, 11.9 \mathrm{mmol})$, and MeI ($460 \mathrm{mg}, 3.29 \mathrm{mmol}$) in acetone (12 mL) was refluxed for 12 h . The insoluble material was separated by centrifugation, and the organic layer was concentrated. The residue was chromatographed ($\mathrm{SiO}_{2}, 7: 1$ hexane- AcOEt) to give $386 \mathrm{mg}(86 \%)$ of $3 \mathbf{b}\left(n=12, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}\right)$ as a waxy oil: bp $104.0-$ $108.0^{\circ} \mathrm{C}(0.005 \mathrm{~mm}$, Kugelrohr); IR (neat) 1743 (ester $\mathrm{C}=0$), 1711 $(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(60 \mathrm{MHz}) \delta 1.30\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.33$ (br s, 24, $\left.\mathrm{CH}_{2}\right), 2.40\left(\mathrm{~m}, 2, \mathrm{COCH}_{2}\right), 3.71\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 18.8(\mathrm{q}$, $\left.\mathrm{CCH}_{3}\right), 22.5(\mathrm{t}), 25.8(\mathrm{t}), 26.1(\mathrm{t}), 26.3(\mathrm{t}), 26.8(\mathrm{t}), 27.0(\mathrm{t}), 27.5(\mathrm{t}), 34.9$ $(\mathrm{t}, \mathrm{C}-15), 37.5(\mathrm{t}, \mathrm{C}-3), 52.2\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 59.4(\mathrm{~s}, \mathrm{C}-1), 174.1(\mathrm{~s}$, ester $\mathrm{C}=\mathrm{O}$), 207.7 (s, C-2). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{3}$: C. $72.93 ; \mathrm{H}, 10.88$. Found: C, 73.01; H, 10.94 .

Methyl 1-methyl-2-oxocyclododecane-1-carboxylate (3b, n $=9, \mathbf{R}^{1}=R^{2}=\mathbf{M e}$) was prepared in the same manner as described above in 90% yield by treatment of $3 \mathbf{a}^{7}\left(n=9, \mathrm{R}^{2}=\right.$ Me) with MeI: bp $97.0-99.0^{\circ} \mathrm{C}(0.002 \mathrm{~mm}$, Kugelrohr); IR (neat) 1738 (ester $\mathrm{C}=\mathrm{O}$), 1710 $(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(100 \mathrm{MHz}) \delta 0.90,0.97,1.55\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.31$
(br s, 18, CH_{2}), 2.75-3.26 (m, 2, COCH_{2}), 3.71 (s, 3, OCH_{3}). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{3}$: $\mathrm{C}, 70.83 ; \mathrm{H}, 10.30$. Found: C, $70.92 ; \mathrm{H}, 10.59$.
Methyl 1-pentyl-2-oxocycloheptane-1-carboxylate (3b, $\boldsymbol{n}=$ 4, $\mathbf{R}^{1}=\boldsymbol{n}-\mathrm{C}_{5} \mathbf{H}_{11}, \mathbf{R}^{\mathbf{2}}=\mathbf{M e}$) was prepared in the same manner as described above in 87% yield by the reaction of $3 \mathrm{a}^{7}\left(n=4, \mathrm{R}^{2}=\mathrm{Me}\right.$) with pentyl bromide in the presence of KI: bp $55.0-58.5^{\circ} \mathrm{C}(0.017 \mathrm{~mm}$, Kugelrohr); IR (neat) 1738 (ester $\mathrm{C}=0$), $1714(\mathrm{C}=0) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz}) \delta 0.89\left(\mathrm{t}, 3, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{br} \mathrm{s}, 8, \mathrm{CH}_{2}\right), 1.50-2.30$ $\left(\mathrm{m}, 8, \mathrm{CH}_{2}\right), 2.39-2.76\left(\mathrm{~m}, 2, \mathrm{COCH}_{2}\right), 3.78\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right)$. Anal. Caled for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3}: \mathrm{C}, 69.96 ; \mathrm{H}, 10.07$. Found: C, 70.08 ; $\mathrm{H}, 10.25$.
Methyl 1-hexyl-2-oxocyclopentane-1-carboxylate (3b, $n=2$, $\mathbf{R}^{\mathbf{1}}=\boldsymbol{n}-\mathbf{C}_{6} \mathbf{H}_{13}, \mathbf{R}^{2}=\mathbf{M e}$) was prepared in the same manner as de scribed above in 93% yield by the reaction of $3 \mathbf{a}^{8}\left(n=2, \mathrm{R}^{2}=\mathrm{Me}\right.$) with hexyl bromide in the presence of KI: bp $90.0-93.0^{\circ} \mathrm{C}(2 \mathrm{~mm}$, Kugelrohr); IR (neat) $1755\left(\mathrm{C}=0\right.$), 1730 (ester $\mathrm{C}=0$) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (60 $\mathrm{MHz}) \delta 0.86\left(\mathrm{t}, 3, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.28\left(\mathrm{br} \mathrm{s}, 8, \mathrm{CH}_{2}\right), 1.35-2.70(\mathrm{~m}, 8$, CH_{2}), 3.68 ($\mathrm{s}, 3, \mathrm{OCH}_{3}$). Anal. Caled for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}$: $\mathrm{C}, 68.99 ; \mathrm{H}, 9.80$. Found: C, $68.80 ; \mathrm{H}, 9.80$.
Methyl 2-Hydroxy-1-methylcyclopentadecane-1-carboxylate ($\mathbf{4 a}, \boldsymbol{n}=12, \mathbf{R}^{1}=\mathbf{R}^{\mathbf{2}}=\mathbf{M e}$). To a cold solution ($0-5^{\circ} \mathrm{C}$) of $\mathbf{3 b}(n=12$, $\left.\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me} ; 106 \mathrm{mg}, 0.36 \mathrm{mmol}\right)$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added dropwise a solution of $\mathrm{NaBH}_{4}(48 \mathrm{mg}, 1.27 \mathrm{mmol})$ in water $(0.5 \mathrm{~mL})$, The mixture was stirred for 3 h at room temperature, quenched with cold aqueous $10 \% \mathrm{AcOH}$, and worked up in the usual manner to give $96 \mathrm{mg}(89 \%)$ of $\mathbf{4 a}\left(n=12, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}\right)$ as an oil: bp $112.0-114.5^{\circ} \mathrm{C}$ 0.004 mm , Kugelrohr); IR (neat) 3500 (OH), 1730 (shoulder), 1714 (ester $\mathrm{C}=0$) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (60 MHz) $\delta 1.13\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.33(\mathrm{brs}$, $26, \mathrm{CH}_{2}$), 2.80 (br s, 1, OH), 3.69 ($\mathrm{s}, 3, \mathrm{OCH}_{3}$), 3.35-4.10 (m, 1, CHO). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{34} \mathrm{O}_{3}: \mathrm{C}, 72.44 ; \mathrm{H}, 11.48$. Found: $\mathrm{C}, 72.54 ; \mathrm{H}$, 11.49.

Methyl 2-hydroxy-1-methylcyclododecane-1-carboxylate (4a, $n=\mathbf{9 ,} \mathbf{R}^{\mathbf{1}}=\mathbf{R}^{\mathbf{2}}=\mathbf{M e}$) was prepared in the same manner as described above in 96% yield: mp $115.5-116.5^{\circ} \mathrm{C}$; IR (Nujol) $3510(\mathrm{OH}), 1710$ (ester $\mathrm{C}=0$) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz}) \delta 1.17\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.36$ (br s, $20, \mathrm{CH}_{2}$), 2.88 (br, $\left.1, \mathrm{OH}\right), 3.72$ ($\mathrm{s}, 3, \mathrm{OCH}_{3}$), $4.22(\mathrm{~d}, 1, J=9 \mathrm{~Hz}, \mathrm{CHO}$). Anal. Caled for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{3}$: C, 70.27: H, 11.01. Found: C, 70.15; H, 11.02.

Methyl 2-hydroxy-1-pentylcycloheptane-1-carboxylate (4a, $\boldsymbol{n}=\mathbf{4}, \mathrm{R}^{\mathbf{1}}=\boldsymbol{n}-\mathrm{C}_{5} \mathbf{H}_{11}, \mathrm{R}^{\mathbf{2}}=\mathbf{M e}$) was prepared in the same manner as described above in 90% yield: bp $96.0-98.0^{\circ} \mathrm{C}(0.03 \mathrm{~mm}$, Kugelrohr); IR (neat) 350010 H), 1727 (ester $\mathrm{C}=0$), 1710 (shoulder) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 0.88\left(\mathrm{t}, 3, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), 1.26 (br, $8, \mathrm{CH}_{2}$), 1.4()$-2.25\left(\mathrm{~m}, 10, \mathrm{CH}_{2}\right.$), 2.59 (br, $\left.1, \mathrm{OH}\right), 3.70\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.84-4.16$ (m, 1, CHO). Anal. Calced for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{3}: \mathrm{C}, 69.38 ; \mathrm{H}, 10.81$. Found: C , 69.48; H, 10.86.

Ethyl 2-hydroxy-1-pentylcyclohexane-1-carboxylate (4a, \boldsymbol{n} $=3, \mathbf{R}^{1}=n-\mathbf{C}_{5} \mathbf{H}_{11}, \mathbf{R}^{2}=\mathbf{E t}$) was prepared in the same manner in 94% yield by the reaction of $3 \mathrm{~b}^{9}\left(n=3, \mathrm{R}^{1}=n-\mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{R}^{2}=\mathrm{Et}\right)$ and NaBH_{4} : bp $77.5-79.0^{\circ} \mathrm{C}(0.006 \mathrm{~mm}$, Kugelrohr); IR (neat) $3500(\mathrm{OH})$, 1725. 1701 (ester $\mathrm{C}=0$) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 0.88(\mathrm{t}, 3 . J=$ $\left.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.00-2.30\left(\mathrm{~m}, 16, \mathrm{CH}_{2}\right), 1.26,1.29\left(\mathrm{t}, 3, \mathrm{~J}=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.15$ (b), $1, \mathrm{OH}$), 3.48, 3.88 (dd, $1, J=8$ and $4 \mathrm{~Hz}, \mathrm{CHO}$), $4.02,4.04(\mathrm{q}, 2$. $J=7 \mathrm{~Hz}_{2}, \mathrm{CH}_{2} \mathrm{O}$). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{3}: \mathrm{C}, 69.38 ; \mathrm{H}, 10.81$. Found C. $69.47 ; \mathrm{H}, 10.96$.

Methyl 1-hexyl-2-hydroxycyclopentane-1-carboxylate (4a, $\boldsymbol{n}=\mathbf{2}, \mathbf{R}^{1}=\boldsymbol{n}-\mathrm{C}_{6} \mathbf{H}_{13}, \mathbf{R}^{\mathbf{2}}=\mathbf{M e}$) was prepared in 96% yield by the reaction of 3 b ($\left.n=2 . \mathrm{R}^{1}=n-\mathrm{C}_{6} \mathrm{H}_{1 ; 3}, \mathrm{R}^{2}=\mathrm{Me}\right)$ and $\mathrm{LiAl}(t-\mathrm{BuO}) ; \mathrm{H}:$ bp 59.0-61.0 ${ }^{\circ} \mathrm{C}(0.003 \mathrm{~mm}$. Kugelrohr): IR (neat) $3450(\mathrm{OH}), 1725$. 1715 lester $\mathrm{C}=0$) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 0.88(\mathrm{t}, 3, J=6 \mathrm{~Hz}$, CH_{3}), 1.27 (br s. $8 . \mathrm{CH}_{2}$), $1.40-2.30\left(\mathrm{~m} .8, \mathrm{CH}_{2}\right.$), 2.27 (br, $1, \mathrm{OH}$), 3.67. :3. 70 (s. 3. OCH 3), 3.99-4.40 (m. 1, CHO). Anal. Caled for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{3}$: C. 68.38 ; H, 10.59 . Found: C, 68.20 . H. 10.53.

Methyl 1-Methyl-2-(methanesulfonoxy)cyclapentadecane1 -carboxylate ($4 \mathrm{~b}, n=12, \mathrm{R}^{1}=\mathbf{R}^{2}=\mathbf{M e}$). A solution of $\mathbf{4 a}(n=12$. $\left.\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me} ; 196 \mathrm{mg}, 0.66 \mathrm{mmol}\right)$ and $\mathrm{MeSO}_{2} \mathrm{Cl}(226 \mathrm{mg}, 1.97 \mathrm{mmol})$ in pyridine (3 mL) was stirred for 30 min at $0-5{ }^{\circ} \mathrm{C}$ and for 3 h at room temperature. The mixture was quenched with cold water and worked up in the usual manner to give $247 \mathrm{mg}\left(100 \%\right.$) of $4 \mathrm{~b}\left(\mathrm{n}=12, \mathrm{R}^{1}=\mathrm{R}^{2}\right.$ $=$ Me): IR (neat) 1729 (ester $\mathrm{C}=-\mathrm{O}$), $1341,1171\left(\mathrm{SO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz}\right.$) $\delta 1.20,1.24\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right.$), $1.30\left(\mathrm{br}, 26, \mathrm{CH}_{2}\right), 2.93,3.01(\mathrm{~s}, 3$. $\mathrm{SO}_{2} \mathrm{CH}_{3}$), $3.69\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 4.60-5.20(\mathrm{~m}, \mathrm{l}, \mathrm{CHO})$. Anal. Caled for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 60.61: \mathrm{H}, 9.64$. Found: C, 60.79; H, 9.67.
Methyl 1-methyl-2-(methanesulfonoxy)cyclododecane-1carboxylate ($\mathbf{4 b}, n=9, \mathbf{R}^{1}=\mathbf{R}^{2}=\mathbf{M e}$) was prepared in the same manner as described above in 98% yield: IR (neat) $1730 \mathrm{~cm}^{-1}$ (ester): ${ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 1.24$ ($\mathrm{s}, 3, \mathrm{CH}_{3}$), 1.38 (br s, $20, \mathrm{CH}_{2}$), 2.96, 3.06 $\left(\mathrm{s}, 3, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 3.70\left(\mathrm{~s}, 3 . \mathrm{OCH}_{3}\right), 4.86,5.38(\mathrm{~d}, 1, J=8 \mathrm{~Hz}, \mathrm{CHO})$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, ~ 57.47$; $\mathrm{H}, 9.04$. Found: $\mathrm{C}, 57.76 ; \mathrm{H}$, 8.82 .

Methyl 2-(methanesulfonoxy)-1-pentylcycloheptane-1-car-
boxylate ($\mathbf{4 b}, \boldsymbol{n}=\mathbf{4}, \mathbf{R}^{\mathbf{1}}=\boldsymbol{n}-\mathbf{C}_{\mathbf{5}} \mathbf{H}_{11}, \mathbf{R}^{\mathbf{2}}=\mathbf{M e}$) was prepared in the same manner as described above in 99% yield: IR (neat) $1735 \mathrm{~cm}^{-1}$ (ester $\mathrm{C}=0$); ${ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 0.87\left(\mathrm{t}, 3, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.23$ (br, 8, CH_{2}), 1.40-2.36 (m, 10, CH_{2}), 2.92, 2.97 ($\mathrm{s}, 3, \mathrm{SO}_{2} \mathrm{CH}_{3}$), 3.66 (s, $\left.3, \mathrm{OCH}_{3}\right), 5.00,5.16(\mathrm{~d}, 1, J=6 \mathrm{~Hz}, \mathrm{CHO})$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~S}$: C, $56.23 ; \mathrm{H}, 8.81$. Found: C, $56.06 ; \mathrm{H}, 8.94$.

Ethyl 2-(methanesulfonoxy)-1-pentylcyclohexane-1-carboxylate (4b, $n=3, R^{1}=n-\mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{R}^{\mathbf{2}}=\mathrm{Et}$) was prepared in the same manner as described above in 97% yield: IR (neat) $1730 \mathrm{~cm}^{-1}$ (ester $\mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 0.88\left(\mathrm{t}, 3, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), $1.05-2.30\left(\mathrm{~m}, 16, \mathrm{CH}_{2}\right), 1.29\left(\mathrm{t}, 3, J=7 \mathrm{~Hz} . \mathrm{CH}_{3}\right.$), 2.98, 3.03 (s, 3 , $\left.\mathrm{SO}_{2} \mathrm{CH}_{3}\right), 4.02-4.37\left(\mathrm{~m}, 2, \mathrm{CH}_{2} \mathrm{O}\right), 5.01,5.24(\mathrm{~d}, 1, J=6 \mathrm{~Hz}, \mathrm{CHO})$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 56623 ; \mathrm{H}, 8.81$. Found: C. $56.44 ; \mathrm{H}$, 8.88 .

Methyl 1-hexyl-2-(methanesulfonoxy)cyclopentane-1-carboxylate ($\mathbf{4 b}, \boldsymbol{n}=\mathbf{2 ,} \mathrm{R}^{1}=n-\mathrm{C}_{6} \mathrm{H}_{13}, \mathrm{R}^{2}=\mathrm{Me}$) was prepared in the same manner as described above in 98% yield: IR (neat) $1727 \mathrm{~cm}^{-1}$ (ester $\mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 0.86\left(\mathrm{t}, 3, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.26$ (br, 8, CH_{2}), 1.56-2.32 (m, 8, CH_{2}), 2.96, 3.02 ($\mathrm{s}, 3, \mathrm{SO}_{2} \mathrm{CH}_{3}$), 3. 70 (s , $\left.3, \mathrm{OCH}_{3}\right), 4.89,5.28(\mathrm{t}, 1, J=4 \mathrm{~Hz}, \mathrm{CHO})$. Anal. Caled for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~S}$: C, 54.89; H, 8.55. Found: C, 54.87; H, 8.55 .

Methyl (E)- and (Z)-1-Methyl-2-cyclopentadecene-1-carboxylates ($\mathbf{a}, \boldsymbol{n}=12, \mathbf{R}^{1}=\mathbf{M e}$). A mixture of $4 \mathbf{b}\left(n=12, \mathrm{R}^{1}=\mathrm{R}^{2}\right.$ $=\mathrm{Me} ; 220 \mathrm{mg}, 0.59 \mathrm{mmol})$ and $\mathrm{Me}_{2} \mathrm{SO}(2 \mathrm{~mL})$ was heated at $135-140$ ${ }^{\circ} \mathrm{C}$ for 3 h and worked up in the usual manner to give $162 \mathrm{mg}(99 \%)$ of la $\left(n=12, \mathrm{R}^{1}=\mathrm{Me}\right)$: bp $73.0-75.5^{\circ} \mathrm{C}(0.0035 \mathrm{~mm}$, Kugelrohr); IR (neat) $1733 \mathrm{~cm}^{-1}$ (ester $\mathrm{C}=0$): ${ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 1.26\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right)$, 1.32 (br s, 22, CH_{2}), $2.12\left(\mathrm{~m}, 2, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 3.66\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 5.25-\overline{5} .75$ ($\mathrm{m}, 2, \mathrm{HC}=\mathrm{C}$) Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{2}$: C. 77.09 : $\mathrm{H}, 11.50$. Found: C, 77.02; H, 11.60 .
Methyl (E)- and (Z)-1-methyl-2-cyclododecene-1-carboxylates ($\mathbf{a} \mathbf{a}, n=9, \mathbf{R}^{1}=\mathbf{M e}$) were prepared in the same manner as described above in 97% yield: bp $139.0-141.0^{\circ} \mathrm{C} / 2 \mathrm{~mm}$, Kugelrohr); IR (neat) $1730 \mathrm{~cm}^{-1}$ (ester $\mathrm{C}=0$); ${ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 1.26$ (s, $3, \mathrm{CH}_{3}$), 1.29 (br, 14, CH_{2}), 1.61-2.30 ($\mathrm{m}, 4, \mathrm{CH}_{2}$), 3.66 (s, 3, OCH_{3}), 5.12-5.86 ($\mathrm{m}, 2, \mathrm{HC}=\mathrm{C}$). Anal. Calcd for $\mathrm{C}_{1.5} \mathrm{H}_{26} \mathrm{O}_{2}$: C., 75.58: H. 10.99. Found: C, 75.74; H, 11.17.
Methyl 1-pentyl-2-cycloheptene-1-carboxylate (1a, $n=4, \mathbf{R}^{1}$ $=\boldsymbol{n}-\mathbf{C}_{5} \mathbf{H}_{11}$) was prepared in the same manner as described above in 97% yield: bp $96.0-98.0^{\circ} \mathrm{C}$ (2 mm , Kugelrohr ; IR (neat) 3020,1732 (ester $\mathrm{C}=0$), $1650(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1},{ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 0.87(\mathrm{t}, 3 . j$ $=6 \mathrm{~Hz}, \mathrm{CH}_{3}$), 1.25 (br, $\left.6, \mathrm{CH}_{2}\right), 1.40-1.80\left(\mathrm{~m} .10, \mathrm{CH}_{2}\right), 1.90-2.17(\mathrm{~m}$, $\left.2, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 3.63\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 5.49-5.89(\mathrm{~m} .2, \mathrm{HC}=\mathrm{C})$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}: \mathrm{C}, 74.95 ; \mathrm{H}, 10.78$. Found: C, 75.05; H, 10.84.
Ethyl 1-pentyl-2-cyclohexene-1-carboxylate (1b, $n=3, \mathbf{R}^{1}=$ $n-\mathrm{C}_{5} \mathbf{H}_{11}$) was prepared in the same manner as described above in $91 \%_{0}$ yield: bp $8: 3.0-85.0)^{\circ} \mathrm{C}(2 \mathrm{~mm}$, Kugelrohr); IR (neat) ; 3020,1730 lester $\mathrm{C}=0), 1651(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.100 \mathrm{MH} z\right) \delta 0.88(\mathrm{t} .3, J=6 \mathrm{~Hz}$, CH_{3}), $1.23\left(\mathrm{br}, 6, \mathrm{CH}_{2}\right), 1.25\left(\mathrm{t}, 3, J=7 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right), 1.41-1.81(\mathrm{~m}, 5)\right.$. CH_{2}), $1.95-2.28\left(\mathrm{~m}, 3, \mathrm{CH}_{2}\right), 4.17\left(\mathrm{q}, 2 . J=7 \mathrm{~Hz} . \mathrm{CH}_{v}\right.$) $)$, $\overline{0} .79$ (brs. ${ }^{2}, \mathrm{HC}=\mathrm{C}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}: \mathrm{C}, 74,9 ; \mathrm{H}, 10.78$. Found: C . 75.19; H, 10.91.

Methyl 1-hexyl-2-cyclopentene-1-carboxylate (la, $n=2, \mathbf{R}^{1}$ $=n-\mathrm{C}_{6} \mathrm{H}_{13}$) was prepared in the same manner as described above in 98\% yield: bp 92.0-94.0 ${ }^{\circ} \mathrm{C}(3 \mathrm{~mm}$, Kugelrohr): IR (neat) 3040, 173.2 (ester $\mathrm{C}=0$), $1619(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-3} ;{ }^{1} \mathrm{H}$ NMR (1010 MHz) $\delta 0.88(\mathrm{t}, 3 . \mathrm{J}$ $\left.=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.28\left(\mathrm{br}, 8 . \mathrm{CH}_{2}\right), 1.50-1.97\left(\mathrm{~m} .3, \mathrm{CH}_{2}\right), 2.24-2.56(\mathrm{~m}$. 3, CH_{2}), 3.72 ($\mathrm{s}, 3, \mathrm{OCH}_{3}$), $5.68-5.94$ (m. 2. $\mathrm{H}(=\mathrm{C})$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}: \mathrm{C}, 74,24 ; \mathrm{H}, 10.54$. Found: C, 74.20 : H. 10.60.
(E)- and (Z)-1-Methyl-2-cyclopentadecene-1-carboxylic Acids ($\mathbf{1 c}, \boldsymbol{n}=12, \mathbf{R}^{1}=\mathbf{M e}$). A solution of $1 \mathbf{a}\left(n=12 . \mathrm{R}^{1}=\mathrm{Me} ; 240.5\right.$ $\mathrm{mg}, 0.86 \mathrm{mmol}$) and KOH ($290 \mathrm{mg}, 5.17 \mathrm{mmol}$) in MeOH (7 mL) and water (0.6 mL) was stirred for 5 h at $60-65^{\circ} \mathrm{C}$. Atter the solvent was removed, the mixture was washed with benzene and the aqueous laver was acidified with cold aqueous $10 \% \mathrm{HCl}$ and worked up in the usual manner to give $218 \mathrm{mg}(95 \%)$ of $1 \mathrm{c}(\mathrm{n}=12 . \mathrm{K}=$ Me) as a solid: mp 69.5-71.5 ${ }^{\circ} \mathrm{C}$; IR (Nujol$) 3400-2600(\mathrm{COOH}), 15(0)(\mathrm{COOH}) \mathrm{cm}^{-1},{ }^{\prime} \mathrm{H}$ NMR $(100 \mathrm{MHz}) \delta 1.31\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.33$ (brs. 22. $\left(\mathrm{CH}_{2}\right) \cdot 2.00-2.32(\mathrm{~m}$. $\left.2, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 5.40-5.72(\mathrm{~m}, 2, \mathrm{HC}=\mathrm{C}), 11.40(\mathrm{br}, 1, \mathrm{COOH})$. Anal. (aled for $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{O}_{2}: \mathrm{C}, 76.64 ; \mathrm{H}, 11: 35$. Found: ($\mathrm{C}, 76.75: \mathrm{H}, 11.57$.
(E)- and (Z)-1-Methyl-2-cyclododecene-1-carboxylic acids ($\mathbf{1 c}, \boldsymbol{n}=9, \mathrm{R}^{\mathbf{1}}=\mathrm{Me}$) were prepared in the same manner as described above in 86% yield: IR (neat) $3600-2500(\mathrm{COOH}) .1697(\mathrm{COOH}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 1.26 .1 .36\left(\mathrm{~s}, 3 . \mathrm{CH}_{3}\right), 1.31\left(\mathrm{brs}, 16 . \mathrm{CH}_{2}\right)$. $1.90-2.29\left(\mathrm{~m}, 2, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 5.10-5.84(\mathrm{~m}, 2 . \mathrm{HC}=(\mathrm{O}) .11 .76(\mathrm{br} .1$. (OOH). Anal. Caled for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}: \mathrm{C} .74 .95 ; \mathrm{H}, 10.78$. Found: (., 74.88: H. 10.83 .

1-Pentyl-2-cycloheptene-1-carboxylic acid (1c, $n=4, \mathrm{R}^{1}=$ $n-\mathrm{C}_{5} \mathbf{H}_{11}$) was prepared in the same manner as described above in 88% vield: IR (neat) $3400-2400(\mathrm{COOH}), 1697(\mathrm{COOH}) \mathrm{cm}^{-1}:{ }^{1} \mathrm{H}$ NMR
$(100 \mathrm{MHz}) \delta 0.87\left(\mathrm{t}, 3, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.28\left(\mathrm{br}, 6, \mathrm{CH}_{2}\right), 1.48-1.92(\mathrm{~m}$, $10, \mathrm{CH}_{2}$), 2.00-2.22 (m, 2, $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 5.50-6.00(\mathrm{~m}, 2, \mathrm{HC}=\mathrm{C}), 10.18$ (br, 1, COOH). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}$: $\mathrm{C}, 74.24 ; \mathrm{H}, 10.54$. Found: C, $74.49 ; \mathrm{H}, 10.70$.
1-Pentyl-2-cyclohexene-1-carboxylic acid (1c, $n=3, R^{1}=$ $\boldsymbol{n}-\mathrm{C}_{5} \mathrm{H}_{\mathbf{1 1}}$) was prepared in the same manner as described above in 93% yield: IR (neat) $3400-2400(\mathrm{COOH}), 1695(\mathrm{COOH}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz}) \delta 0.91\left(\mathrm{t}, 3, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{br}, 6, \mathrm{CH}_{2}\right), 1.46-1.79(\mathrm{~m}$, $5, \mathrm{CH}_{2}$), 1.88-2.30 (m, 3, CH_{2}), $5.76-6.04(\mathrm{~m}, 2, \mathrm{HC}=\mathrm{C}), 10.70(\mathrm{br}, 1$, $\mathrm{COOH})$. Anal. Caled for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}: \mathrm{C}, 73.43 ; \mathrm{H}, 10.27$. Found: C, 73.43 ; H, 10.38 .

1-Hexyl-2-cyclopentene-1-carboxylic acid (1c, $n=2, R^{1}=$ $n-\mathbf{C}_{6} \mathbf{H}_{13}$) was prepared in the same manner as described above in 83% yield: IR (neat) $3400-2400(\mathrm{COOH}), 1698(\mathrm{COOH}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz}) \delta 0.90\left(\mathrm{t}, 3, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.28\left(\mathrm{br}, 8, \mathrm{CH}_{2}\right), 1.48-1.99(\mathrm{~m}$, $\left.3, \mathrm{CH}_{2}\right), 2.44\left(\mathrm{~m}, 3, \mathrm{CH}_{2}\right), 5.76-5.96(\mathrm{~m}, 2, \mathrm{HC}=\mathrm{C}), 9.95(\mathrm{br}, 1, \mathrm{COOH})$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$: C, $73.43 ; \mathrm{H}, 10.27$. Found: C, $73.40 ; \mathrm{H}$, 10.46 .

8,8a-Epoxy-2,2-(ethylenedioxy)-4a-decalylcarboxylic Acid (6). To a solution of $8 \mathbf{b}$ ($105 \mathrm{mg}, 0.44 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was added 85%-chloroperbenzoic acid ($120 \mathrm{mg}, 0.59 \mathrm{mmol}$), and the mixture was stirred for 20 h at $5^{\circ} \mathrm{C}$. Removal of the solvent and subsequent chromatography ($\mathrm{SiO}_{2}, 1: 1$ hexane- AcOEt) gave 99.6 mg (89%) of 6 as an oil: IR (neat) $3600-2400(\mathrm{COOH}), 1710(\mathrm{COOH}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 1.19-3.04\left(\mathrm{~m}, 13, \mathrm{CH}_{2}, \mathrm{CHO}\right), 3.97-4.16(\mathrm{~m}, 4$, $\mathrm{CH}_{2} \mathrm{O}$), 6.16 (br s, 1, COOH). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5}: \mathrm{C}, 61.41$; H , 7.14. Found: C, 61.51; H, 7.20.

2,2-(Ethylenedioxy)-1,2,3,4,4a,5,6,7-octahydronaphthalene-4a-carboxylic Acid (8b). To a solution of $8 \mathbf{a}^{10}(416 \mathrm{mg}, 1.56 \mathrm{mmol})$ in MeOH (15 mL) was added a solution of KOH ($530 \mathrm{mg}, 9.46 \mathrm{mmol}$) in water (1 mL). The mixture was stirred for 24 h at $55-60^{\circ} \mathrm{C}$ and worked up in the usual manner to give 292 mg (79%) of 8 b as a solid: $\mathrm{mp} 71.5-73.5^{\circ} \mathrm{C}$; IR (Nujol) $3400-2500(\mathrm{COOH}), 1680(\mathrm{COOH}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 1.30-3.05\left(\mathrm{~m}, 12, \mathrm{CH}_{2}\right), 3.96\left(\mathrm{~s}, 4, \mathrm{CH}_{2} \mathrm{O}\right), 5.69$ (br s, 1, $\mathrm{HC}=\mathrm{C}$), 9.56 (br s. $1, \mathrm{COOH}$). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}: \mathrm{C}$, $65.53 ;$ H, 7.61. Found: C, 65.80; H, 7.88.

Electrolysis Apparatus. An undivided cell was equipped with a platinum anode $\left(3 \mathrm{~cm}^{2}\right)$, a platinum cathode ($3 \mathrm{~cm}^{2}$), and/or a SUS-27 stainless steel cathode ($11 \mathrm{~cm}^{2}$), a gas lead pipe, and a thermometer. Regulated dc power was supplied by a Metronix 543B instrument.

General Procedure for Electrochemical Synthesis of 2a from le in $\mathrm{AcOH}-\mathrm{AcOEt}-\boldsymbol{t}-\mathrm{BuOH}$. A stirred solution of lc ($n=12, \mathrm{R}^{1}$ $=\mathrm{Me} ; 26 \mathrm{mg}, 0.098 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(436 \mathrm{mg}, 4.3 \mathrm{mmol})$ in $\mathrm{AcOH}(1.5$ $\mathrm{mL}), \mathrm{AcOEt}(3.5 \mathrm{~mL})$, and $t-\mathrm{BuOH}(0.19 \mathrm{~mL})$ was electrolyzed in a heaker fitted with two platinum electrodes at a constant applied voltage of 30 V , current density $36-54 \mathrm{~mA} / \mathrm{cm}^{2}$, for $3 \mathrm{~h}(\sim 153 \mathrm{~F} / \mathrm{mol}$) at $19-22^{\circ} \mathrm{C}$. After electrolysis, the mixture was concentrated and taken up in ether. The extracts were washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and shaken over solid $\mathrm{K}_{2} \mathrm{CO}_{3}$. Removal of the solvent and subsequent chromatography ($\mathrm{SiO}_{2}, 5: 1$ hexane-AcOEt) gave 21.8 mg (79%) of $2 \mathrm{a}\left(n=12, \mathrm{R}^{1}=\mathrm{Me}\right)$ as an oil: bp $110.0-111.0^{\circ} \mathrm{C}(0.03 \mathrm{~mm}$, Kugelrohr): IR (neat) 1735 (ester $\mathrm{C}==0$), $1670(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $(100) \mathrm{MHz}) \delta 1.32$ (br, $24, \mathrm{CH}_{2}$), 1.70 (s, $3, \mathrm{CH}_{3}$), 2.01 (s, $3, \mathrm{COCH}_{3}$), $2.00-2.18\left(\mathrm{~m}, 2, \mathrm{CH}_{2}\right), 5.12(\mathrm{~d}, 1, J=10 \mathrm{~Hz}, \mathrm{HC}=\mathrm{C}), 5.38-5.60(\mathrm{~m}$, 1, (HO). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{2}: \mathrm{C}, 77.09$; $\mathrm{H}, 11.50$. Found: $\mathrm{C}, 77.25$; H. 11.41.
(E)- and (Z)-;-Methyl-2-cyclododecen-1-ol Acetates (2a, n $=9, \mathrm{R}^{1}=\mathbf{M e}$): $\mathrm{bp} 45.0-47.0^{\circ} \mathrm{C}(0.0015 \mathrm{~mm}$, Kugelrohr); IR (neat) 1735 (ester $\mathrm{C}=\mathrm{O}), 1660(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz}) \delta 1.28$ (br, 16, CH_{2}), 1.53. 1.73 ($\mathrm{s}, 3, \mathrm{CH}_{3}$), $1.90-2.10\left(\mathrm{~m}, 2, \mathrm{CH}_{2}\right), 2.01(\mathrm{~s}, 3$, $\left(\mathrm{OCH}_{3}\right), 5.26(\mathrm{~d}, 1, J=10 \mathrm{~Hz}, \mathrm{HC}=\mathrm{C}), 5.34-5.65(\mathrm{~m}, 1, \mathrm{CHO})$. Anal. Caled for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2}: \mathrm{C}, 75.58 ; \mathrm{H}, 10.99$. Found: C, $75.53 ; \mathrm{H}, 11.07$.

3-Pentyl-2-cyclohepten-1-ol Acetate (2a, $n=4, \mathbf{R}^{1}=\boldsymbol{n}-\mathbf{C}_{5} \mathbf{H}_{11}$): bp $57.0-59.0^{\circ} \mathrm{C}(0.002 \mathrm{~mm}$. Kugelrohr); IR (neat) 1730 (ester $\mathrm{C}=0$), 1370. 1241, $1025 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 0.90(\mathrm{t}, 3, J=6 \mathrm{~Hz}$, $\left(\mathrm{H}_{3}\right), 1.20-2.24\left(\mathrm{~m}, 10, \mathrm{CH}_{2}\right), 1.29\left(\mathrm{br}, 6, \mathrm{CH}_{2}\right), 2.03\left(\mathrm{~s}, 3, \mathrm{COCH}_{3}\right)$, 3. 41 (br s, $2 . \mathrm{HC}=\mathrm{C}, \mathrm{CHO}$; ${ }^{13} \mathrm{C}$ NMR $\delta 14.0$ (q), 21.4 (q, acetyl CH_{3}), $29.6(\mathrm{t}), 26.1(\mathrm{t}), 27.2(\mathrm{t}), 27.3(\mathrm{t}), 31.5(\mathrm{t}), 32.5(\mathrm{t}), 32.9(\mathrm{t}), 40.1(\mathrm{t}, \mathrm{C}-7)$, $74.0(\mathrm{~d}, \mathrm{C}-1), 127.0(\mathrm{~d}, \mathrm{C}-2), 144.0(\mathrm{~s}, \mathrm{C}-3), 170.4$ (s, acetyl $\mathrm{C}=\mathrm{O}$). Anal. (aled for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}$: C, $74.95 ; \mathrm{H}, 10.78$. Found: C, $75.11 ; \mathrm{H}, 10.76$.

3-Pentyl-2-cyclohexen-1-ol Acetate (2a, $n=3, \mathrm{R}^{1}=\boldsymbol{n}-\mathrm{C}_{5} \mathbf{H}_{11}$): bp $51.0-53.0^{\circ} \mathrm{C}(0.011 \mathrm{~mm}$, Kugelrohr); IR (neat) 1730 (ester $\mathrm{C}=\mathrm{O}$), $1664(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz}) \delta 0.89\left(\mathrm{t}, 3, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, 1.29 (br, $6, \mathrm{CH}_{2}$), 1.71 (br, $4, \mathrm{CH}_{2}$), 1.91-2.40 (m, 4, CH_{2}), 2.03 (s, 3 , COCH_{3}), 5.27 (br, $1, \mathrm{HC}==\mathrm{C}$), 5.44 ($\mathrm{br} \mathrm{s}, 1, \mathrm{CHO}$); ${ }^{13} \mathrm{C}$ NMR $\delta 14.0(\mathrm{q})$, $19.2(\mathrm{t}), 21.5\left(\mathrm{q}\right.$, acetyl $\left.\mathrm{CH}_{3}\right), 22.6(\mathrm{t}), 27.1(\mathrm{t}), 28.4(\mathrm{t}, 2 \mathrm{C}), 31.6(\mathrm{t}, \mathrm{C}-4)$, 37.7 (t, C-6), $68.9(\mathrm{~d}, \mathrm{C}-1), 119.2$ (d, C-2), 144.9 (s, C-3), 170.8 (s, acetyl $\mathrm{C}=\mathrm{O}$. Anal. Caled for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}: \mathrm{C}, 74.24 ; \mathrm{H}, 10.54$. Found: $\mathrm{C}, 74.39$; H, 10.62 .

3-Hexyl-2-cyclopenten-1-ol Acetate (2a, $n=2, \mathrm{R}^{1}=\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}$): bp $49.0-51.0^{\circ} \mathrm{C}(0.006 \mathrm{~mm}$. Kugelrohr); IR (neat) 1730 (ester $\mathrm{C}=\mathrm{O}$),
$1682(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (100 MHz$) \delta 0.90\left(\mathrm{t}, 3, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $1.31\left(\mathrm{br}, 8, \mathrm{CH}_{2}\right), 1.50-2.55\left(\mathrm{~m}, 6, \mathrm{CH}_{2}\right), 1.92\left(\mathrm{~s}, 3, \mathrm{COCH}_{3}\right), 5.41$ (complex s, 1, $\mathrm{HC}=\mathrm{C}$), 5.52 (broad m, 1, CHO). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}$: C, $74.24 ; \mathrm{H}, 10.54$. Found: C, $74.35 ; \mathrm{H}, 10.45$.
General Procedure for Electrosynthesis of 2 c and/or 5 from lc in MeOH. A stirred solution of $\mathbf{1 c}\left(n=12, \mathrm{R}^{1}=\mathrm{Me} 27.8 \mathrm{mg}, 0.104\right.$ mmol) in $\mathrm{MeOH}(15 \mathrm{~mL})$ containing $\mathrm{Et}_{3} \mathrm{~N}$ ($210 \mathrm{mg}, 2.08 \mathrm{mmol}$) was electrolyzed in a beaker fitted with a platinum anode and a SUS-27 stainless steel cathode at a constant applied voltage of 20 V , current density $41-44 \mathrm{~mA} / \mathrm{cm}^{2}$, for $3 \mathrm{~h}(\sim 140 \mathrm{~F} / \mathrm{mol})$ at $20-26^{\circ} \mathrm{C}$. The electrolysis solution was concentrated, and the residue was taken up in ether-benzene. The organic layer was washed with brine and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Removal of the solvent and subsequent chromatography ($\mathrm{SiO}_{2}, 7: 1$ hexane-AcOEt) gave $21.9 \mathrm{mg}(83 \%)$ of a mixture of 2 c and $5\left(n=12, \mathrm{R}^{1}=\mathrm{Me}\right)$ [the ratio of $\mathbf{2 c} / 5$ was estimated to be $1: 2$ based on ${ }^{1} \mathrm{H}$ NMR signals at $\delta 3.16\left(\mathrm{~s}, \mathrm{OCH}_{3}\right)$ and $\left.3.22\left(\mathrm{~s}, \mathrm{OCH}_{3}\right)\right]$: bp $70.5-73.0^{\circ} \mathrm{C}(0.003 \mathrm{~mm}$, Kugelrohr); IR (neat) $1660(\mathrm{C}=\mathrm{C}), 1458$, $1371,1088,976 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 1.20,1.68\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.30$ ($\mathrm{br}, 22, \mathrm{CH}_{2}$), $2.13\left(\mathrm{~m}, 2, \mathrm{CH}_{2}\right), 3.16,3.22\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.94(\mathrm{~m}, \mathrm{CHO})$, 4.99-5.67 (m, $\mathrm{HC}=\mathrm{C}$). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}: \mathrm{C}, 80.89$; H, 12.78 . Found: C, 80.97; H, 12.91.
(E) - and (Z)-3-Methoxy-1-methyl-2-cyclododecenes (2c, $n=$ 9, $\mathbf{R}^{1}=\mathbf{M e}$) and/or (E) - and (Z)-1-methoxy-1-methyl-2-cyclododecenes $\left(5, \boldsymbol{n}=9, \mathbf{R}^{1}=\mathbf{M e}\right)(2 \mathrm{c} / 5=1: 2)$: bp $75.0-77.5^{\circ} \mathrm{C}(0.005$ mm , Kugelrohr); IR (neat) $1660(\mathrm{C}=\mathrm{C}), 1460,1443,1371,1080,982$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz}) \delta 1.21,1.71\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 1.29\left(\mathrm{br}, 16, \mathrm{CH}_{2}\right)$, $2.10\left(\mathrm{~m}, 2, \mathrm{CH}_{2}\right), 3.19,3.26\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.79-4.04(\mathrm{~m}, \mathrm{CHO}), 5.12-5.48$ (m, $\mathrm{HC}=\mathrm{C}$). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}: \mathrm{C}, 79.94 ; \mathrm{H}, 12.46$. Found: C, 79.91; H, 12.27

1-Methoxy-3-pentyl-2-cyclohexene (2c, $n=3, \mathrm{R}^{1}=n-\mathrm{C}_{5} \mathrm{H}_{11}$): bp $73.5-75.0^{\circ} \mathrm{C}(0.006 \mathrm{~mm}$, Kugelrohr); IR (neat) $1666(\mathrm{C}=\mathrm{C}), 1468$, $1452,1378,1354,1194,1095,934,912 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 0.89$ ($\mathrm{t}, 3, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}$), $1.14-2.03\left(\mathrm{~m}, 14, \mathrm{CH}_{2}\right), 3.37\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.72$ (br, 1, CHO), 5.50 (br, 1, $\mathrm{HC}=\mathrm{C}$). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 79.06$; H, 12.16. Found: C, 79.11; H, 12.37.

1-Methoxy-1-pentyl-2-cyclohexene ($5, n=3, R^{1}=\boldsymbol{n}-\mathbf{C}_{5} \mathbf{H}_{11}$): bp $72.0-74.5^{\circ} \mathrm{C}$ (0.006 mm , Kugelrohr); IR (neat) 3010,1648 ($\mathrm{C}=\mathrm{C}$), $1468,1454,1074,908 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz}) \delta 0.98(\mathrm{t}, 3, J=6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.10-2.16\left(\mathrm{~m}, 14, \mathrm{CH}_{2}\right), 3.17,3.18\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 5.57(\mathrm{~d}, 1, J=$ $10 \mathrm{~Hz}, \mathrm{HC}=\mathrm{C}$), 5.88 (dt, $1, J=10$ and $4 \mathrm{~Hz}, \mathrm{HC}=\mathrm{C}$). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 79.06 ; \mathrm{H}, 12.16$. Found: C, $79.26 ; \mathrm{H}, 12.28$.

Electrolysis of 6 in MeOH . A solution of $6(77.6 \mathrm{mg}, 0.306 \mathrm{mmol})$ in $\mathrm{MeOH}(12 \mathrm{~mL})$ containing $\mathrm{Et}_{3} \mathrm{~N}$ ($210 \mathrm{mg}, 2.08 \mathrm{mmol}$) was electrolyzed with two platinum electrodes at a constant applied voltage of 20 V , current density $23-32 \mathrm{~mA} / \mathrm{cm}^{2}$, for $7 \mathrm{~h}(\sim 120 \mathrm{~F} / \mathrm{mol})$ at $44-49$ ${ }^{\circ} \mathrm{C}$. The mixture was concentrated, and the residue was worked up in the usual manner to give $53.5 \mathrm{mg}(84.2 \%)$ of 7 as an oil after chromatography ($\mathrm{SiO}_{2}, 10: 1$ hexane-AcOEt): bp $73.5-76.0^{\circ} \mathrm{C}(0.007 \mathrm{~mm}$, Kugelrohr); IR (neat) $1664(\mathrm{C}=\mathrm{O}), 1635(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (60 MHz) $\delta 1.20-2.60\left(\mathrm{~m}, 12, \mathrm{CH}_{2}\right), 3.97$ (complex s, $4, \mathrm{CH}_{2} \mathrm{O}$); ${ }^{13} \mathrm{C}$ NMR $\delta 22.2(\mathrm{t}), 30.7(\mathrm{t}, 2 \mathrm{C}), 31.1(\mathrm{t}), 32.3(\mathrm{t}), 37.3(\mathrm{t}), 64.4(\mathrm{t}, 2 \mathrm{C}), 107.9(\mathrm{~s}$, C-2), 130.0 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 155.7 ($\mathrm{s}, \mathrm{C}-4 \mathrm{a}$), 198.4 ($\mathrm{s}, \mathrm{C}-8$). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$: C, $69.21 ; \mathrm{H}, 7.74$. Found: C, $69.34 ; \mathrm{H}, 7.76$

Electrolysis of $8 \mathbf{b}$ in $\mathbf{M e O H}$. A solution of $8 \mathbf{b}(102.5 \mathrm{mg}, 0.43$ $\mathrm{mmol})$ in $\mathrm{MeOH}(12 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(291 \mathrm{mg}, 2.88 \mathrm{mmol})$ was electrolyzed using two platinum electrodes at a constant applied voltage of 20 V , current density $23-33 \mathrm{~mA} / \mathrm{cm}^{2}$, for $5 \mathrm{~h}(\sim 82 \mathrm{~F} / \mathrm{mol})$. The usual workup and subsequent chromatography ($\mathrm{SiO}_{2}, 10: 1$ hexane- AcOEt) gave $27.2 \mathrm{mg}(28.6 \%)$ of 9 and $37.8 \mathrm{mg}(39.7 \%)$ of 10 as a oil product. Physical constants together with elemental analyses of 9 and 10 are as follows.

2,2-(Ethylenedioxy)-4a-methoxy-1,2,3,4,4a,5,6,7-octahydro-
naphthalene (9): bp $41.0-42.5^{\circ} \mathrm{C}(0.01 \mathrm{~mm}$, Kugelrohr); IR (neat) 3050, 1376, 1311, 1265, 1202, 1167, 1130, 1088, 1068, 1000, 974, 965, $948,869,811 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (60 MHz) $\delta 1.23-2.75\left(\mathrm{~m}, 12, \mathrm{CH}_{2}\right.$), 3.17 (s, 3, OCH_{3}), $3.93\left(\mathrm{~s}, 4, \mathrm{CH}_{2} \mathrm{O}\right), 5.69(\mathrm{br} \mathrm{s}, 1, \mathrm{HC}=\mathrm{C}) ;{ }^{13} \mathrm{C}$ NMR $\delta 19.9$ (t), 25.3 (t), $30.5(\mathrm{t}), 31.6(\mathrm{t}), 33.7(\mathrm{t}), 41.2(\mathrm{t}, \mathrm{C}-1), 49.5\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 64.3$ (t, 2C), 73.0 ($\mathrm{s}, \mathrm{C}-4 \mathrm{a}$), 109.2 ($\mathrm{s}, \mathrm{C}-2$), 127.4 (d, C-8), 135.4 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a})$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{33}: \mathrm{C}, 69.61 ; \mathrm{H}, 8.99$. Found: $\mathrm{C}, 69.63 ; \mathrm{H}$, 8.89

2,2-(Ethylenedioxy)-8-methoxy-1,2,3,4,5,6,7,8-octahydronaphthalene (10): bp $41.0-43.5^{\circ} \mathrm{C}(0.006 \mathrm{~mm}$, Kugelrohr); IR (neat) 1365, 1329, 1251, 1215, 1197, 1141, 1130, 1098, 1080, 1017, 947, 900, $842 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(60 \mathrm{MHz}) \delta 1.27-2.73\left(\mathrm{~m}, 12, \mathrm{CH}_{2}\right), 3.32(\mathrm{~s}, 3$, $\left.\mathrm{OCH}_{3}\right), 3.45(\mathrm{~m}, 1, \mathrm{CHO}), 3.97\left(\mathrm{~s}, 4, \mathrm{CH}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 18.6(\mathrm{t}), 26.6$ (t), 29.7 (t), $29.9(\mathrm{t}), 31.0(\mathrm{t}), 37.5(\mathrm{t}, \mathrm{C}-1), 59.4\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 64.3(\mathrm{t}, 2 \mathrm{C})$ 77.8 (d, C-8), 108.6 (s, C-2), 126.5 (s, C-4a), 132.4 (s, C-8a). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}: \mathrm{C}, 69.61 ; \mathrm{H}, 8.99$. Found: C, $69.69 ; \mathrm{H}, 8.90$.
(E)- and (Z)-3-Methyl-2-cyclopentadecen-1-ols ($2 \mathrm{~b}, \boldsymbol{n}=12$, $\mathbf{R}^{1}=\mathbf{M e}$). A solution of $\mathbf{2 a}\left(n=12, \mathrm{R}^{1}=\mathrm{Me} ; 20 \mathrm{mg}, 0.071 \mathrm{mmol}\right)$ and KOH ($50 \mathrm{mg}, 0.89 \mathrm{mmol}$) in 25% aqueous $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred
for 8 h at $5-10^{\circ} \mathrm{C}$. The mixture was worked up in the usual manner to give $16 \mathrm{mg}(93 \%)$ of $\mathbf{2 b}\left(n=12, \mathrm{R}^{1}=\mathrm{Me}\right)$ as an oil: bp $51.5-53.5^{\circ} \mathrm{C}$ (0.005 mm , Kugelrohr); IR (neat) $3320(\mathrm{OH}), 1668(\mathrm{C}=\mathrm{C}), 1460,1380$, $1015,720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 1.32$ (br s, $23, \mathrm{CH}_{2}, \mathrm{OH}$), 1.68 (s, 3, CH_{3}), 2.04-2.15 (m, 2, CH_{2}), 4.28-4.54 (m, 1, CHO), 5.18 (d, 1, $J=10 \mathrm{~Hz}, \mathrm{HC}=\mathrm{C}$). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}: \mathrm{C}, 80.61 ; \mathrm{H}, 12.68$. Found: C, 80.54 ; H, 12.55.
(E) - and (Z)-3-Methyl-2-cyclopentadecen-1-ones (11). ${ }^{11} \mathrm{To}$ a stirred suspension of pyridinium chlorochromate ($30 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added dropwise a solution of $2 \mathrm{~b}\left(n=12, \mathrm{R}^{1}=\right.$ $\mathrm{Me} ; 15 \mathrm{mg}, 0.063 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0-5^{\circ} \mathrm{C}$. The mixture was stirred for 30 min at $5^{\circ} \mathrm{C}$ and for 2 h at room temperature and worked up in the usual manner to give $9.7 \mathrm{mg}(65 \%)$ of 11 as an oil: bp $75.0-78.0^{\circ} \mathrm{C}$
 $1685(\mathrm{C}=0), 1617(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}{ }^{1} \mathrm{H}$ NMR (100 MHz) $\delta 1.30(\mathrm{br}, 22$, $\left.\mathrm{CH}_{2}\right), 2.14\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 2.28,2.41\left(\mathrm{~d}, 2, J=5 \mathrm{~Hz}, \mathrm{COCH}_{2}\right), 6.17(\mathrm{br} \mathrm{s}$, $1, \mathrm{HC}=\mathrm{C}$).
d I-Muscone. ${ }^{12}$ A mixture of $11(7 \mathrm{mg}, 0.03 \mathrm{mmol})$ and 10% palladium on charcoal in EtOH (1.5 mL) was treated with excess H_{2} (2 mL). The mixture was filtered, and the filtrate was concentrated to give $6.8 \mathrm{mg}(97 \%)$ of dl -muscone: ${ }^{13}$ bp $77.5-79.0^{\circ} \mathrm{C}(0.005 \mathrm{~mm}$, Kugelrohr) [lit. ${ }^{11 \mathrm{a}} 100-105^{\circ} \mathrm{C}(0.01 \mathrm{~mm})$]; IR (neat) $1715 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $(60 \mathrm{MHz}) \delta 0.92\left(\mathrm{~d}, 3, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.29\left(\mathrm{br}, 23, \mathrm{CH}_{2}, \mathrm{CH}\right), 2.00-2.52$ ($\mathrm{m}, 4, \mathrm{CH}_{2}$).

Registry No.-(E)- 1a ($n=12, \mathrm{R}^{\mathrm{l}}=\mathrm{Me}$), 69832-58-2; (Z)-1a (n $\left.=12, \mathrm{R}^{1}=\mathrm{Me}\right), 69832-59-3 ;(E)-\mathrm{la}\left(n=9, \mathrm{R}^{1}=\mathrm{Me}\right), 69832-60-6$; $(Z)-1 \mathbf{a}\left(n=9, \mathrm{R}^{1}=\mathrm{Me}\right), 69832-61-7 ; \mathbf{l} \mathbf{a}\left(n=4, \mathrm{R}^{1}=n-\mathrm{C}_{5} \mathrm{H}_{11}\right)$, 69832-62-8; la $\left(n=2, \mathrm{R}^{1}=n-\mathrm{C}_{6} \mathrm{H}_{13}\right), 69832-63-9 ; \mathbf{1 b}\left(n=3, \mathrm{R}^{1}=\right.$ $\left.n-\mathrm{C}_{5} \mathrm{H}_{11}\right), 69832-64-0 ;(E)-1 \mathbf{c}\left(n=12, \mathrm{R}^{1}=\mathrm{Me}\right), 69832-65-1 ;(Z)-1 \mathbf{c}$ ($n=12, \mathrm{R}^{1}=\mathrm{Me}$), 69832-66-2; $(E)-\mathrm{lc}\left(n=9, \mathrm{R}^{1}=\mathrm{Me}\right), 69832-67-3$; $(Z)-1 \mathbf{c}\left(n=9, \mathrm{R}^{1}=\mathrm{Me}\right), 69832-68-4 ; 1 \mathbf{c}\left(n=4, \mathrm{R}^{1}=n-\mathrm{C}_{5} \mathrm{H}_{11}\right)$, 69832-69-5; 1c $\left(n=3, \mathrm{R}^{1}=n-\mathrm{C}_{5} \mathrm{H}_{11}\right), 69855-40-9 ; \mathrm{cc}\left(n=2, \mathrm{R}^{1}=\right.$ $n-\mathrm{C}_{6} \mathrm{H}_{13}$), 69832-70-8; (E)-2a ($n=12, \mathrm{R}^{1}=\mathrm{Me}$), 69832-71-9; (Z)-2a ($n=12, \mathrm{R}^{1}=\mathrm{Me}$), 69832-72-0; (E)-2a $\left(n=9, \mathrm{R}^{1}=\mathrm{Me}\right), 69832-73-1$; (Z)-2a $\left(n=9, \mathrm{R}^{1}=\mathrm{Me}\right)$, 69832-74-2; 2a $\left(n=4, \mathrm{R}^{1}=n-\mathrm{C}_{5} \mathrm{H}_{11}\right)$, 69832-75-3; $\mathbf{2 a},\left(n=3, \mathrm{R}^{1}=n-\mathrm{C}_{5} \mathrm{H}_{11}\right), 69832-76-4 ; \mathbf{2 a}\left(n=2, \mathrm{R}^{1}=\right.$ $\left.n-\mathrm{C}_{6} \mathrm{H}_{13}\right), 69832-77-5 ;(E)-2 \mathbf{b}\left(n=12, \mathrm{R}^{1}=\mathrm{Me}\right), 69832-78-6 ;(Z)-2 \mathrm{~b}$ $\left(n=12, \mathrm{R}^{1}=\mathrm{Me}\right), 69832-79-7$; (E)-2c $\left(n=12, \mathrm{R}^{1}=\mathrm{Me}\right), 69832-80-0$; $(Z)-2 \mathrm{c},\left(n=12, \mathrm{R}^{1}=\mathrm{Me}\right), 69832-81-1 ;(E)-2 \mathrm{c}\left(n=9, \mathrm{R}^{1}=\mathrm{Me}\right)$, 69832-82-2; (Z) 2c, $\left(n=9, \mathrm{R}^{1}=\mathrm{Me}\right), 69832-83-3 ; \mathbf{2 c}\left(n=3, \mathrm{R}^{1}=\right.$ $\left.n-\mathrm{C}_{5} \mathrm{H}_{11}\right), 69832-84-4 ; 3 \mathbf{a}\left(n=12, \mathrm{R}^{2}=\mathrm{Me}\right), 52794-21-5 ; 3 \mathbf{a}(n=9$, $\left.\mathrm{R}^{2}=\mathrm{Me}\right), 62939-87-1 ; 3 \mathrm{a},\left(n=4, \mathrm{R}^{2}=\mathrm{Me}\right), 52784-32-4 ; 3 \mathrm{a}\left(n=2, \mathrm{R}^{2}\right.$ $=\mathrm{Me}), 10472,24-9 ; \mathbf{3} \mathbf{b}\left(n=12, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}\right), 69832-85-5 ; 3 \mathbf{b}(n=$ $\left.9, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}\right), 69832-86-6 ; 3 \mathrm{~b}\left(n=4, \mathrm{R}^{\mathrm{I}}=n-\mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{R}^{2}=\mathrm{Me}\right)$, $698.32-87-7 ; 3 \mathbf{b}\left(n=2, \mathrm{R}^{1}=n-\mathrm{C}_{6} \mathrm{H}_{13}, \mathrm{R}^{2}=\mathrm{Me}\right), 69832-88-8 ; \mathbf{3} \mathbf{b}(n=$ $\left.3, \mathrm{R}^{1}=n-\mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{R}^{2}=\mathrm{Et}\right), 57026-68-3 ; 4 \mathrm{a}\left(n=12, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}\right)$, 69832-89-9; 4a $\left(n=9, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}\right), 69832-90-2 ; \mathbf{4 a}\left(n=4, \mathrm{R}^{1}=\right.$ $\left.n-\mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{R}^{2}=\mathrm{Me}\right), 69832-91-3 ; 4 \mathbf{a}\left(n=3, \mathrm{R}^{1}=n-\mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{R}^{2}=\mathrm{Et}\right)$, 69832-92-4; 4a $\left(n=2, \mathrm{R}^{1}=n-\mathrm{C}_{6} \mathrm{H}_{13}, \mathrm{R}^{2}=\mathrm{Me}\right), 69832-93-5 ; \mathbf{4 b}(n=$ $\left.12, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}\right), 69832-94-6 ; \mathbf{4 b}\left(n=9, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}\right), 69832-95-7$; $4 \mathbf{b}\left(n=4, \mathrm{R}^{1}=n-\mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{R}^{2}=\mathrm{Me}\right), 69832-96-8 ; \mathbf{4} \mathbf{b}\left(n=3, \mathrm{R}^{1}=n-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{R}^{2}=\mathrm{Et}\right), 69832-97-9 ; \mathbf{4 b}\left(n=2, \mathrm{R}^{1}=n-\mathrm{C}_{6} \mathrm{H}_{13}, \mathrm{R}^{2}=\mathrm{Me}\right)$, 69832-98-0; (E)-5 $\left(n=12, \mathrm{R}^{1}=\mathrm{Me}\right)$, 69832-99-1; $(Z)-5\left(n=12, \mathrm{R}^{1}\right.$ $=\mathrm{Me}), 69833-00-7 ;(E)-5\left(n=9, \mathrm{R}^{1}=\mathrm{Me}\right), 69833-01-8 ;(Z)-5(\mathrm{n}=$ $\left.9, \mathrm{R}^{1}=\mathrm{Me}\right), 69833-02-9 ; 5\left(n=3, \mathrm{R}^{1}=n-\mathrm{C}_{5} \mathrm{H}_{11}\right), 69833-03-0 ; 6$, 69833-04-1; 7, 69833-05-2; 8a, 65898-58-0; 8b, 69833-06-3; 9, 69833() $7-4$; 10, 69833-08-5; (E)-11, 58643-70-2; (Z)-11, 58643-71-3; dlmuscone, 956-82-1.

References and Notes

(1) (a) Torii, S.: Tanaka, H.; Mandai, T. J. Org. Chem. 1975, 40, 2221. (b) Torii, S.; Okamoto, T.; Tanida, G.; Hino, H.; Kitsuya, Y. ibid. 1976, 41, 166.
(2) Anodic oxidations of 3 -alkenoic acids with lack of product selectivity have been reported: (a) Fichter, F.; Holbro, T. Helv. Chim. Acta 1937, 20, 333 (b) Banda, F. M.; Brettle, R. J. Chem, Soc., Perkin Trans. 1 1977, 1773 (c) Utley, J. H. P.; Yates, G. B. J. Chem. Soc., Perkin Trans 2 1978, 395. Chemical oxidation of 2 -alkenoic acids with lead tetraacetate: (d) Jacques, J.: Weidmann-Hattier, C.; Hreau, A. Bull. Soc. Chim. Fr. 1959, 424. (e) Bacha, J. D.; Kochi, J, K. J. Org. Chem. 1968, 33, 88.
(3) Mooknerjee, B. U.; Patel, R. R.; Ledig, W. O. J. Org. Chem. 1971, 36 , 4124
(4) de Mayo, P.; de la Mare, P. B. D. "Molecular Rearrangements"; Interscience New York, 1963; p 27. (b) DeWolfe, R. H.; Young, W. G. Chem. Rev. 1956, 56, 753.
(5) (a) March, J. "Advanced Organic Chemistry: Reactions, Mechanisms, and Structure"; McGraw-Hill: New York, 1968; p 270. (b) Semenow, D.; Shin, C.-H.; Young, W. G. J. Am. Chem. Soc. 1958, 80, 5472.
(6) Prelog, V.; Geyer, U. Helv. Chim Acta 1945, 28, 1677.
(7) Torii, S.; Okamoto, T.; Jeno, N. J. J. Chem. Soc., Chem. Commun. 1978, 293.
(8) Reich, H. J.; Renga, J. M.; Relch, I. L. J. Org. Chem. 1974, 39, 2133.
(9) Tiffeneau, M.; Tchoubar, M. B.; Saiaslambert, M.; LeTellerDupré, M. Bull. Soc. Chim. Fr. 1947, 445
(10) Minckier, L. S.; Hussey, A. S.; Baker, R. H. J. Am. Chem. Soc. 1956, 78. 1009.
(11) (a) Stoll, M.; Rouvé, A. Helv. Chim. Acta 1947, 30, 2019. (b) Firmenich and Cie., Swiss 254 799, Jan 17, 1949 (Cl. 360); Chem. Abstr. 1949, 44, 3018. (c) Yoshii, E.; Kimoto, S. Chem. Pharm. Bull. 1969, 17, 629. (d) lto, Y.: Saegusa, T. J. Org. Chem. 1977, 42, 2326.
(12) For recent syntheses of d/-muscone: (a) Stork, G.; Macdonald, T. L. J. Am. Chem, Soc. 1975, 97, 1264. (b) See also ref 11d. (c) Nokami, J.; Kusumoto. Y., Jinnai, M.; Kawada, M. Chem. Lett. 1977, 715.
(13) The authors thank Dr. J. Nokami, Okayama University of Science, for the spectral data of $d l$-muscone and Soda Koryo Co. Ltd. for a generous gift of cyclopentadecanone.

Reaction of 2,3,4,6-Tetramethoxybenzaldehyde with Aluminum Chloride. Selective Cleavage at Position 2 and Selective Ether Exchange at Position 3

Edward G. Paul* and Paul Sun-Chi Wang
Department of Chemistry, Brigham Young liniversity, Provo, Utah 84602

Received Nowember 15, 1977

The cleavage of 2,3,4,6-tetramethoxybenzaldehyde, 1, with aluminum chloride in ether to obtain the 2-hydroxy compound, $2,{ }^{1}$ is accompanied by formation of appreciable amounts (38%) of a single ethoxy-containing compound. This compound is identified as 3 . A modification for a high yield preparation of pure 2 is described.

Polymethoxybenzaldehydes with 2 -methoxy groups can cleave that group selectively with aluminum chloride. ${ }^{2-4}$ Reichstein ${ }^{2}$ formed the 2-hydroxy compound 4 from 5 using toluene as the solvent, but Robertson, ${ }^{3}$ finding that toluene cleaved all the methoxy groups, used ether as the solvent.
To monocleave 1 to 2 , we tried Robertson's method. The cleavage product had a wide melting point range after some purification and showed ethoxy peaks in ${ }^{1} \mathrm{H}$ NMR. The simplicity of the spectra suggested a mixture containing a single ethoxy compound in 38% yield. Isolation of the dimethoxyethoxyhydroxybenzaldehyde, 3, was accomplished via extraction with 5% sodium carbonate solution. Its identity was established by methylation and comparison with known ethoxytrimethoxybenzaldehydes. The ethoxy should be either in the 3 position (next to the phenol) or the 6 position (next to the formyl group). Accordingly, 3 -ethoxy-2,4,6-trimethoxyand 6 -ethoxy-2,3,4-trimethoxybenzaldehydes, 6 and 7 , were prepared respectively from the phenols 8 and 9 via ethylation to 10 and 11 and formylation to 6 and 7 . By increasing the

	R_{1}	R_{2}	R_{3}	R_{4}
1	CHO	CH_{3}	CH_{3}	$\mathrm{CH}_{3} \mathrm{O}$
$\mathbf{2}$	CHO	H	CH_{3}	$\mathrm{CH}_{3} \mathrm{O}$
3	CHO	H	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	$\mathrm{CH}_{3} \mathrm{O}$
4	CHO	H	CH_{3}	H
5	CHO	CH_{3}	CH_{3}	H
6	CHO	CH_{3}	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	$\mathrm{CH}_{3} \mathrm{O}$
7	CHO	CH_{3}	CH_{3}	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$
8	H	CH_{3}	H	$\mathrm{CH}_{3} \mathrm{O}$
9	H	CH_{3}	CH_{3}	OH_{3}
10	H	CH_{3}	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	$\mathrm{CH}_{3} \mathrm{O}$
11	H	CH_{3}	CH_{3}	$\mathrm{CH}_{3} \mathrm{CH} \mathrm{O}$
12	CHO	H	H	$\mathrm{CH}_{3} \mathrm{O}$
13	CHO		$-\mathrm{CH}_{2}-$	$\mathrm{CH}_{3} \mathrm{O}$

